

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	flatland 0.0.hg-tip documentation

Flatland

Flatland maps between rich, structured Python application data and the
string-oriented flat namespace of web forms, key/value stores, text
files and user input. Flatland provides a schema-driven mapping
toolkit with optional data validation.

Flatland is great for:

	Collecting, validating, re-displaying and processing HTML form
data

	Dealing with rich structures (lists, dicts, lists of dicts, etc.)
in web data

	Validating JSON, YAML, and other structured formats

	Associating arbitrary Python types with JSON, .ini, or sys.argv
members that would otherwise deserialize as simple strings.

	Reusing a single data schema for HTML, JSON APIs, RPC, ...

The core of the Flatland toolkit is a flexible and extensible
declarative schema system representing many data types and structures.

A validation system and library of schema-aware validators is also
provided, with rich i18n capabilities for use in HTML, network APIs
and other environments where user-facing messaging is required.

Contents

	Overview
	Philosophy

	Introduction

	Defining and Using Forms
	Introduction

	Element Types

	Advanced Usage

	Validation
	Basic Validation

	Custom Validation

	Validator API

	Included Validators

	HTML Forms and Markup
	Markup Generation

	Controlling Attribute Transformations

	Transformations

	Generator

	Genshi Directives

	Signals
	Using Signals

	Built-In Signals

	Internal Utilities
	flatland.util.base

	flatland.util.deferred

	Patterns
	Widgets using Templates and Schema Properties

	The Flatland Project
	License

	Authors & Contributors

	History

	Documentation Todo List

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Overview

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

Overview

Philosophy

flatland’s design stems from a few basic tenets:

	All input is suspect

	Input can come from multiple sources and interfaces

	Bad input isn’t exceptional: it is expected

With flatland, you describe exactly what elements your form may contain.
Forms extract and process only their known elements out of the (key,
value) input data. Unexpected or malicious data will not be processed.

The description of forms and their fields is data-centric rather than HTML or
interface-centric. In a flatland form schema, a password input field is
simply a string, not a “PasswordInput” or the like. The decision about how to
represent that field is left up to another layer entirely. Maybe you do want
an <input type="password"> control, or maybe <input type="hidden"> in
some cases, or sometimes the data is coming in as JSON. flatland can act as
another type of M in your M/VC, MC, MVC or MTV.

Humans are imperfect and filling out forms will always be
error-prone. flatland recognizes this and provides features to make error
detection and correction part of the regular workflow of a form. By default,
validation routines will consider every element of a form and mark all
problematic fields, allowing users to take action on all issues at once.

Introduction

Field schemas define all possible fields the form may contain. A schema may a
single field, a collection of fields, or an even richer structure. Nested
mappings and lists of fields are supported, as well as compound fields and
even more exotic types.

from flatland import Form, String

class SignInForm(Form):
 username = String
 password = String

Field schemas are long-lived objects similar to class definitions. The
instantiations of a flatland schema are called data elements, a tree structure
of data-holding objects. The elements of a flatland form may be initiated
blank, using default values, or with values taken from your objects.

form = SignInForm.from_flat(request.POST)
if form.validate():
 logging.info(u"sign-in: %s" % form.el('username'))
 redirect('/app/')
else:
 render('login.html', form=form)

Elements are rich objects that validate and normalize input data as well as
hold field-level error and warning messages. Elements can be exported to a
native Python structure, flattened back into Unicode key, value pairs or used
as-is in output templates for form layout, redisplay and error reporting.

>>> as_regular_python_data = form.value
>>> type(as_regular_python_data)
<type 'dict'>
>>> as_regular_python_data['username']
u'jek'
>>> form2 = SignInForm(as_regular_python_data)
>>> assert form['username'].value == form2['username'].value

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Defining and Using Forms

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

Defining and Using Forms

Introduction

	Basic Forms

	Elements

	Traversal

	Annotations & Properties

	Exceptions

Element Types

	Strings, Numbers and Booleans

	Dates and Times

	Dicts

	Lists

	Arrays and MultiValues

	Enumerations

	Compound Fields

Advanced Usage

	References

	Abstract Containers

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Basic Forms

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Basic Forms

	
class Form(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Dict

A declarative collection of named fields.

Forms behave like Dict, but are defined
with Python class syntax:

>>> from flatland import Form, String
>>> class HelloForm(Form):
... hello = String
... world = String
...

Fields are assigned names from the declaration. If a named schema is
used, a renamed copy will be assigned to the Form.

>>> class HelloForm(Form):
... hello = String.named('hello') # redundant
... world = String.named('goodbye') # will be renamed 'world'
...
>>> form = HelloForm()
>>> sorted(form.keys())
[u'hello', u'world']

Forms may embed other container fields and other forms:

>>> from flatland import List
>>> class BigForm(Form):
... main_hello = HelloForm
... alt_hello = List.of(String.named('alt_name'),
... HelloForm.named('alt_hello'))
...

This would create a form with one HelloForm embedded as
main_hello, and a list of zero or more dicts, each containing an
alt_name and another HelloForm named alt_hello.

Forms may inherit from other Forms or Dicts. Field declared in a subclass
will override those of a superclass. Multiple inheritance is supported.

The special behavior of Form is limited to class construction time
only. After construction, the Form acts exactly like a
Dict. In particular, fields declared in class
attribute style do not remain class attributes. They are removed from
the class dictionary and placed in the
field_schema:

>>> hasattr(HelloForm, 'hello')
False
>>> sorted([field.name for field in HelloForm.field_schema])
[u'hello', u'world']

The order of field_schema after construction is undefined.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Elements

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Elements

Elements describe the possible fields of a form; their names, structure,
Python types and rules for validation. A typical schema consists of at least
one container type and one or more scalar
types:

from flatland import Dict, String
SearchSchema = Dict.named('search').of(String.named(u'keywords'))

Todo

FIXME UPDATE:

FieldSchemas are a bit like Python class definitions: they need be
defined only once and don’t do much on their own.
FieldSchema.create_element() produces Elements;
closely related objects that hold and manipulate form data. Much like a
Python class, a single FieldSchema may produce an unlimited number
of Element instances.

>>> form = SearchSchema({u'keywords': u'foo bar baz'})
>>> form.value
{u'keywords': u'foo bar baz'}

Todo

FIXME UPDATE:

FieldSchema instances may be freely composed and shared among many
containers.

>>> from flatland import List
>>> ComposedSchema = Dict.of(SearchSchema,
... List.named(u'many_searches').of(SearchSchema))
>>> form = ComposedSchema()
>>> sorted(form.value.keys())
[u'many_searches', u'search']

Todo

FIXME UPDATE:

Elements can be supplied to template environments and used to
great effect there: elements contain all of the information needed
to display or redisplay a HTML form field, including errors
specific to a field.

The u, x, xa and
el() members are especially useful in templates and have
shortened names to help preserve your sanity when used in markup.

Element

	
class Element(value=Unspecified, **kw)

	Base class for form fields.

A data node that stores a Python and a text value plus added state.

Instance Attributes

	
parent

	An owning element, or None if element is topmost or not a member
of a hierarchy.

	
valid

	

	
errors

	A list of validation error messages.

	
warnings

	A list of validation warning messages.

Members

	
name = None

	The Unicode name of the element.

	
optional = False

	If True, validate() with return True if no value has been set.

validators are not called for optional, empty elements.

	
validators = ()

	A sequence of validators, invoked by validate().

See Validation.

	
default = None

	The default value of this element.

	
default_factory = None

	A callable to generate default element values. Passed an element.

default_factory will be used preferentially over default.

	
ugettext = None

	If set, provides translation support to validation messages.

See Message Internationalization.

	
ungettext = None

	If set, provides translation support to validation messages.

See Message Internationalization.

	
value = None

	The element’s native Python value.

Only validation routines should write this attribute directly: use
set() to update the element’s value.

	
raw = Unset

	The element’s raw, unadapted value from input.

	
u = u''

	A Unicode representation of the element’s value.

As in value, writing directly to this attribute should be
restricted to validation routines.

	
properties = {}

	A mapping of arbitrary data associated with the element.

	
classmethod named(name)

	Return a class with name = name

	Parameters:	name – a string or None. str will be converted to
unicode.

	Returns:	a new class

	
classmethod using(**overrides)

	Return a class with attributes set from **overrides.

	Parameters:	**overrides – new values for any attributes already present on
the class. A TypeError is raised for unknown attributes.

	Returns:	a new class

	
classmethod validated_by(*validators)

	Return a class with validators set to *validators.

	Parameters:	*validators – one or more validator functions, replacing any
validators present on the class.

	Returns:	a new class

	
classmethod including_validators(*validators, **kw)

	Return a class with additional *validators.

	Parameters:	
	*validators – one or more validator functions

	position – defaults to -1. By default, additional validators
are placed after existing validators. Use 0 for before, or any
other list index to splice in validators at that point.

	Returns:	a new class

	
classmethod with_properties(*iterable, **properties)

	
Todo

doc

	
validate_element(element, state, descending)

	Assess the validity of an element.

Todo

this method is dead. Evaluate docstring for good bits
that should be elsewhere.

	Parameters:	
	element – an Element

	state – may be None, an optional value of supplied to
element.validate

	descending – a boolean, True the first time the element
has been seen in this run, False the next

	Returns:	boolean; a truth value or None

The Element.validate() process visits each element in
the tree twice: once heading down the tree, breadth-first, and
again heading back up in the reverse direction. Scalar fields
will typically validate on the first pass, and containers on
the second.

Return no value or None to pass, accepting the element as
presumptively valid.

Exceptions raised by validate_element() will not be
caught by Element.validate().

Directly modifying and normalizing Element.value and
Element.u within a validation routine is acceptable.

The standard implementation of validate_element is:

	If element.is_empty and self.optional,
return True.

	If self.validators is empty and
element.is_empty, return False.

	If self.validators is empty and not
element.is_empty, return True.

	Iterate through self.validators, calling each
member with (element, state). If one returns a false
value, stop iterating and return False immediately.

	Otherwise return True.

	
classmethod from_flat(pairs, **kw)

	Return a new element with its value initialized from pairs.

	Parameters:	**kw – passed through to the element_type.

This is a convenience constructor for:

element = cls(**kw)
element.set_flat(pairs)

	
classmethod from_defaults(**kw)

	Return a new element with its value initialized from field defaults.

	Parameters:	**kw – passed through to the element_type.

This is a convenience constructor for:

element = cls(**kw)
element.set_default()

	
all_valid

	True if this element and all children are valid.

	
root

	The top-most parent of the element.

	
parents

	An iterator of all parent elements.

	
path

	An iterator of all elements from root to the Element, inclusive.

	
children

	An iterator of immediate child elements.

	
all_children

	An iterator of all child elements, breadth-first.

	
fq_name(sep=u'.')

	Return the fully qualified path name of the element.

Returns a sep-separated string of el() compatible element
indexes starting from the Element.root (.) down to the
element.

>>> from flatland import Dict, Integer
>>> Point = Dict.named(u'point').of(Integer.named(u'x'),
... Integer.named(u'y'))
>>> p = Point(dict(x=10, y=20))
>>> p.name
u'point'
>>> p.fq_name()
u'.'
>>> p['x'].name
u'x'
>>> p['x'].fq_name()
u'.x'

The index used in a path may not be the name of the
element. For example, sequence members are referenced by their
numeric index.

>>> from flatland import List, String
>>> Addresses = List.named('addresses').of(String.named('address'))
>>> form = Addresses([u'uptown', u'downtown'])
>>> form.name
u'addresses'
>>> form.fq_name()
u'.'
>>> form[0].name
u'address'
>>> form[0].fq_name()
u'.0'

	
find(path, single=False, strict=True)

	Find child elements by string path.

	Parameters:	
	path – a /-separated string specifying elements to select,
such as ‘child/grandchild/great grandchild’. Relative & absolute
paths are supported, as well as container expansion. See
Path Lookups.

	single – if true, return a scalar result rather than a list of
elements. If no elements match path, None is returned. If
multiple elements match, a LookupError is raised. If
multiple elements are found and strict is false, an unspecified
element from the result set is returned.

	strict – defaults to True. If path specifies children or
sequence indexes that do not exist, a LookupError is raised.

	Returns:	a list of Element instances, an Element if
single is true, or raises LookupError.

>>> cities = form.find('/contact/addresses[:]/city')
>>> [el.value for el in cities]
[u'Kingsport', u'Dunwich']
>>> form.find('/contact/name', single=True)
<String u'name'; value=u'Obed Marsh'>

	
el(path, sep=u'.')

	Find a child element by string path.

	Parameters:	
	path – a sep-separated string of element names, or an
iterable of names

	sep – optional, a string separator used to parse path

	Returns:	an Element or raises KeyError.

>>> first_address = form.el('contact.addresses.0')
>>> first_address.el('street1')
<String u'street1'; value=None>

Given a relative path as above, el() searches for a matching
path among the element’s children.

If path begins with sep, the path is considered fully qualified
and the search is resolved from the Element.root. The
leading sep will always match the root node, regardless of its
name.

>>> form.el('.contact.addresses.0.city')
<String u'city'; value=None>
>>> first_address.el('.contact.addresses.0.city')
<String u'city'; value=None>

	
add_error(message)

	Register an error message on this element, ignoring duplicates.

	
add_warning(message)

	Register a warning message on this element, ignoring duplicates.

	
flattened_name(sep=u'_')

	Return the element’s complete flattened name as a string.

Joins this element’s path with sep and returns the fully
qualified, flattened name. Encodes all Container and other
structures into a single string.

Example:

>>> import flatland
>>> form = flatland.List('addresses',
... flatland.String('address'))
>>> element = form()
>>> element.set([u'uptown', u'downtown'])
>>> element.el('0').value
u'uptown'
>>> element.el('0').flattened_name()
u'addresses_0_address'

	
flatten(sep=u'_', value=<operator.attrgetter object at 0x3bad610>)

	Export an element hierarchy as a flat sequence of key, value pairs.

	Parameters:	
	sep – a string, will join together element names.

	value – a 1-arg callable called once for each
element. Defaults to a callable that returns the
u of each element.

Encodes the element hierarchy in a sep-separated name
string, paired with any representation of the element you
like. The default is the Unicode value of the element, and the
output of the default flatten() can be round-tripped
with set_flat().

Given a simple form with a string field and a nested dictionary:

>>> from flatland import Dict, String
>>> class Nested(Form):
... contact = Dict.of(String.named(u'name'),
... Dict.named(u'address').
... of(String.named(u'email')))
...
>>> element = Nested()
>>> element.flatten()
[(u'contact_name', u''), (u'contact_address_email', u'')]

The value of each pair can be customized with the value callable:

>>> element.flatten(value=operator.attrgetter('u'))
[(u'contact_name', u''), (u'contact_address_email', u'')]
>>> element.flatten(value=lambda el: el.value)
[(u'contact_name', None), (u'contact_address_email', None)]

Solo elements will return a sequence containing a single pair:

>>> element['name'].flatten()
[(u'contact_name', u'')]

	
set(value)

	Assign the native and Unicode value.

Attempts to adapt the given value and assigns this element’s
value and u attributes in tandem. Returns True if the
adaptation was successful.

If adaptation succeeds, value will contain the adapted native
value and u will contain a Unicode serialized version of it. A
native value of None will be represented as u’’ in u.

If adaptation fails, value will be None and u will
contain unicode(value) or u'' for None.

>>> from flatland import Integer
>>> el = Integer()
>>> el.u, el.value
(u'', None)

>>> el.set('123')
True
>>> el.u, el.value
(u'123', 123)

>>> el.set(456)
True
>>> el.u, el.value
(u'456', 456)

>>> el.set('abc')
False
>>> el.u, el.value
(u'abc', None)

>>> el.set(None)
True
>>> el.u, el.value
(u'', None)

	
set_flat(pairs, sep=u'_')

	Set element values from pairs, expanding the element tree as needed.

Given a sequence of name/value tuples or a dict, build out a
structured tree of value elements.

	
set_default()

	set() the element to the schema default.

	
is_empty

	True if the element has no value.

	
validate(state=None, recurse=True)

	Assess the validity of this element and its children.

	Parameters:	
	state – optional, will be passed unchanged to all validator
callables.

	recurse – if False, do not validate children.

	Returns:	True or False.

Iterates through this element and all of its children, invoking each
element’s schema.validate_element(). Each element will be
visited twice: once heading down the tree, breadth-first, and again
heading back up in reverse order.

Returns True if all validations pass, False if one or more fail.

	
default_value

	A calculated “default” value.

If default_factory is present, it will be called with the
element as a single positional argument. The result of the call will
be returned.

Otherwise, returns default.

When comparing an element’s value to its default value, use
this property in the comparison.

	
x

	Sugar, the XML-escaped value of u.

	
xa

	Sugar, the XML-attribute-escaped value of u.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Traversal

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Traversal

Flatland supplies a rich set of tools for working with structured data. For
this section, we’ll use the following schema as an example. It is simple yet
has a bit of variety in its structure.

from flatland import Form, Dict, List, String, Integer

class Annotation(Form):
 """A spot on a 2D surface."""
 title = String
 flags = List.of(Integer)
 location = Dict.of(Integer.named('x'),
 Integer.named('y'))

sample_data = {
 'title': 'Interesting Spot',
 'flags': [1, 3, 5],
 'location': {'x': 10, 'y': 20},
}

ann1 = Annotation(sample_data, name=u'ann1')

Going Raw

You may not even need to use any of these traversal strategies in your
application. An element’s value is a full & recursive
“export” of its native Python value. Many times this is sufficient.

>>> ann1['title'] # ann1 is a flatland structure
<String u'title'; value=u'Interesting Spot'>
>>> type(ann1.value) # but its .value is not
<type 'dict'>
>>> ann1.value == sample_data
True

Python Syntax

Containers elements such as Form, Dict,
and List implement the Python methods you’d expect for
their type. In most cases you may use them as if they were dict and
list instances- the difference being that they always contain
Element instances.

For example, Form and Dict can be indexed and used like dict:

>>> ann1['title'].value
u'Interesting Spot'
>>> ann1['location']['x'].value
10
>>> sorted(ann1['location'].items())
[(u'x', <Integer u'x'; value=10>), (u'y', <Integer u'y'; value=20>)]
>>> u'title' in ann1
True

And List and similar types can be used like lists:

>>> ann1['flags']
[<Integer None; value=1>, <Integer None; value=3>, <Integer None; value=5>]
>>> ann1['flags'][0].value
1
>>> ann1['flags'].value
[1, 3, 5]
>>> Integer(3) in ann1['flags']
True
>>> 3 in ann1['flags']
True

The final example is of special note: the value in the expression is not an
Element. Most containers will accept native Python values in these types
of expressions and convert them into a temporary Element for the
operation. The example below is equivalent to the example above.

>>> ann1['flags'].member_schema(3) in ann1['flags']
True

Traversal Properties

Elements of all types support a core set of properties that allow navigation
to related elements: root,
parents, children, and
all_children.

>>> list(ann1['flags'].children)
[<Integer None; value=1>, <Integer None; value=3>, <Integer None; value=5>]
>>> list(ann1['title'].children) # title is a String and has no children
[]
>>> sorted(el.name for el in ann1.all_children if el.name)
[u'flags', u'location', u'title', u'x', u'y']
>>> [el.name for el in ann1['location']['x'].parents]
[u'location', u'ann1']

Each of these properties (excepting root) returns an iterator of
elements.

Path Lookups

Another option for operating on elements is the find()
method. find selects elements by path, a string that represents one or
more related elements. Looking up elements by path is a powerful technique to
use when authoring flexible & reusable validators.

>>> ann1.find('title') # find 'ann1's child named 'title'
[<String u'title'; value=u'Interesting Spot'>]

Paths are evaluated relative to the element:

>>> ann1['location'].find('x')
[<Integer u'x'; value=10>]

Referencing parents is possible with ..:

>>> ann1['location']['x'].find('../../title')
[<String u'title'; value=u'Interesting Spot'>]

Absolute paths begin with a /.

>>> ann1['location']['x'].find('/title')
[<String u'title'; value=u'Interesting Spot'>]

Members of sequences can be selected like any other child (their index number
is their name), or you can use Python-like slicing:

>>> ann1.find('/flags/0')
[<Integer None; value=1>]
>>> ann1.find('/flags[0]')
[<Integer None; value=1>]

Full Python slice notation is supported as well. With slices, paths can
select more than one element.

>>> ann1.find('/flags[:]')
[<Integer None; value=1>, <Integer None; value=3>, <Integer None; value=5>]
>>> ann1.find('/flags[1:]')
[<Integer None; value=3>, <Integer None; value=5>]

Further path operations are permissible after slices. A richer schema is
needed to illustrate this:

>>> Points = List.of(List.of(Dict.of(Integer.named('x'),
... Integer.named('y'))))
>>> p = Points([[dict(x=1, y=1), dict(x=2, y=2)],
... [dict(x=3, y=3)]])
>>> p.find('[:][:]/x')
[<Integer u'x'; value=1>, <Integer u'x'; value=2>, <Integer u'x'; value=3>]

The equivalent straight Python to select the same set of elements is quite a
bit more wordy.

Path Syntax

	/ (leading slash)

	Selects the root of the element tree

	element

	The name of a child element

	element/child

	/ separates path segments

	..

	Traverse to the parent element

	element[0]

	For a sequence container element, select the 0th child

	element[:]

	Select all children of a container element (need not be a sequence)

	element[1:5]

	Select a slice of a sequence container’s children

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Annotations & Properties

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Annotations & Properties

Flatland provides two options for annotating schemas and data.

Standard Python

Element schemas are normal Python classes and can be extended in all
of the usual ways. For example, you can add an attribute when
subclassing:

from flatland import String

class Textbox(String):
 tooltip = 'Undefined'

Once an attribute has been added to an element class, its value can be
overridden by further subclassing or, more compactly, with the
using() schema constructor:

class Password(Textbox):
 tooltip = 'Enter your password'

Password = Textbox.using(tooltip='Enter your password')
assert Password.tooltip == 'Enter your password'

Both are equivalent, and the custom tooltip will be inherited by
any subclasses of Password. Likewise, instances of Password
will have the attribute as well.

el = Password()
assert el.tooltip == 'Enter your password'

And because the Element() constructor allows overriding any
schema attribute by keyword argument, individual element instances can
be constructed with own values, masking the value provided by their
class.

password_match = Textbox(tooltip='Enter your password again')

assert password_match.tooltip == 'Enter your password again'

Properties

Another option for annotation is the properties
mapping of element classes and instances. Unlike class attributes,
almost any object you like can be used as the key in the mapping.

The unique feature of properties is data inheritance:

from flatland import String

Textboxes are Strings with tooltips
Textbox = String.with_properties(tooltip='Undefined')

A Password is a Textbox with a custom tooltip message
Password = Textbox.with_properties(tooltip='Enter your password')

assert Textbox.properties['tooltip'] == 'Undefined'
assert Password.properties['tooltip'] == 'Enter your password'

Annotations made on a schema are visible to itself and any subclasses,
but not to its parents.

Add disabled to all Textboxes
Textbox.properties['disabled'] = False

disabled is inherited from Textbox
assert Password.properties['disabled'] is False

changes in a subclass do not affect the parent
del Password.properties['disabled']
assert 'disabled' in Textbox.properties

Annotating With Properties

To create a new schema that includes additional properties, construct
it with with_properties():

Textbox = String.with_properties(tooltip='Undefined')

Or if the schema has already been created, manipulate its
properties mapping:

class Textbox(String):
 pass

Textbox.properties['tooltip'] = 'Undefined'

The properties mapping is implemented as a view over
the Element schema inheritance hierarchy. If annotations are added to
a superclass such as String, they
are visible immediately to all Strings and subclasses.

Private Annotations

To create a schema with completely unrelated properties, not
inheriting from its superclass at all, declare it with
using():

Alone = Textbox.using(properties={'something': 'else'})
assert 'tooltip' not in Alone.properties

Or when subclassing longhand, construct a
Properties collection explicitly.

from flatland import Properties

class Alone(Textbox):
 properties = Properties(something='else')

assert 'tooltip' not in Alone.properties

An instance may also have a private collection of properties. This
can be done either at or after construction:

solo1 = Textbox(properties={'something': 'else'})

solo2 = Textbox()
solo2.properties = {'something': 'else'}

Textbox.properties['background_color'] = 'red'

assert 'background_color' not in solo1.properties
assert 'background_color' not in solo2.properties

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Exceptions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Exceptions

	
exception AdaptationError

	Bases: exceptions.Exception

A value could not be coerced into native format.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Strings, Numbers and Booleans

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Strings, Numbers and Booleans

Simple Fields

	
class Scalar(value=Unspecified, **kw)

	Bases: flatland.schema.base.Element

The base implementation of simple values such as a string or number.

Scalar subclasses are responsible for translating the most common data
types in and out of Python-native form: strings, numbers, dates, times,
Boolean values, etc. Any data which can be represented by a single
(name, value) pair is a likely Scalar.

Scalar subclasses have two responsibilities: provide a method to adapt a
value to native Python form, and provide a method to serialize the native
form to a Unicode string.

This class is abstract.

	
set(value)

	Assign the native and Unicode value.

	Returns:	True if adaptation of value was successful.

Attempts to adapt the given value and assigns this element’s
value and u
attributes in tandem.

If adaptation succeeds, .value will contain the
adapted native Python value and .u will contain a
Unicode serialized version of it. A native value
of None will be represented as u'' in .u.

If adaptation fails, .value will be None and .u will
contain unicode(value) or u'' for none.

	
adapt(value)

	Given any value, try to coerce it into native format.

	Returns:	the native format or raises AdaptationError on failure.

This abstract method is called by set().

	
serialize(value)

	Given any value, coerce it into a Unicode representation.

	Returns:	Must return a Unicode object, always.

No special effort is made to coerce values not of native or a
compatible type.

This semi-abstract method is called by set(). The base
implementation returns unicode(value).

	
set_default()

	set() the element to the schema default.

	
validate_element(state, descending)

	Validates on the first, downward pass.

See FieldSchema.validate_element().

Strings

	
class String(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

A regular old Unicode string.

	
strip = True

	If true, strip leading and trailing whitespace during conversion.

	
adapt(value)

	Return a Unicode representation.

	Returns:	a unicode value or None

If strip is true, leading and trailing whitespace will be
removed.

	
serialize(value)

	Return a Unicode representation.

	Returns:	a unicode value or u'' if value is None

If strip is true, leading and trailing whitespace will be
removed.

	
is_empty

	True if the String is missing or has no value.

Numbers

	
class Number(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

Base for numeric fields.

Subclasses provide type_ and format attributes for
adapt() and serialize().

	
type_ = None

	The Python type for values, such as int or float.

	
signed = True

	If true, allow negative numbers. Default True.

	
format = u'%s'

	The unicode serialization format.

	
adapt(value)

	Generic numeric coercion.

	Returns:	an instance of type_ or None

Attempt to convert value using the class’s type_ callable.

	
serialize(value)

	Generic numeric serialization.

	Returns:	a unicode string formatted with format or the
unicode() of value if value is not of type_

Converts value to a string using Python’s string formatting function
and the format as the template. The value is provided to
the format as a single, positional format argument.

	
class Integer(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Number

Element type for Python’s int.

	
type_

	int

alias of int

	
format = u'%i'

	u'%i'

	
class Long(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Number

Element type for Python’s long.

	
type_

	long

alias of long

	
format = u'%i'

	u'%i'

	
class Float(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Number

Element type for Python’s float.

	
type_

	float

alias of float

	
format = u'%f'

	u'%f'

	
class Decimal(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Number

Element type for Python’s Decimal.

	
type_

	decimal.Decimal

alias of Decimal

	
format = u'%f'

	u'%f'

Booleans

	
class Boolean(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

Element type for Python’s bool.

	
true = u'1'

	The unicode serialization for True: u'1'.

	
true_synonyms = (u'on', u'true', u'True', u'1')

	A sequence of acceptable string equivalents for True.

Defaults to (u'on', u'true', u'True', u'1')

	
false = u''

	The unicode serialization for False: u''.

	
false_synonyms = (u'off', u'false', u'False', u'0', u'')

	A sequence of acceptable string equivalents for False.

Defaults to (u'off', u'false', u'False', u'0', u'')

	
adapt(value)

	Coerce value to bool.

	Returns:	a bool or None

If value is a string, returns True if the value is in
true_synonyms, False if in false_synonyms and
None otherwise.

For non-string values, equivalent to bool(value).

	
serialize(value)

	Convert bool(value) to a canonical string representation.

	Returns:	either self.true or self.false.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Dates and Times

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Dates and Times

	
class Temporal(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

Base for datetime-based date and time fields.

	
type_

	Abstract. The native type for element values, will be called with
positional arguments per used below.

	
regex

	Abstract. A regular expression to parse datetime values from a
string. Must supply named groupings.

	
used

	Abstract. A sequence of regex match group names. These matches
will be converted to ints and supplied to the type_
constructor in the order specified.

	
format

	Abstract. A Python string format for serializing the native
value. The format will be supplied a dict containing all
attributes of the native type.

	
adapt(value)

	Coerces value to a native type.

If value is an instance of type_, returns it unchanged. If
a string, attempts to parse it and construct a type as
described in the attribute documentation.

	
serialize(value)

	Serializes value to string.

If value is an instance of type, formats it as described in
the attribute documentation. Otherwise returns unicode(value).

	
class DateTime(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Temporal

Element type for Python datetime.datetime.

Serializes to and from YYYY-MM-DD HH:MM:SS format.

	
type_

	alias of datetime

	
class Date(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Temporal

Element type for Python datetime.date.

Serializes to and from YYYY-MM-DD format.

	
type_

	alias of date

	
class Time(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Temporal

Element type for Python datetime.time.

Serializes to and from HH:MM:SS format.

	
type_

	alias of time

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Dicts

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Dicts

Todo

intro

set() Policy

Todo

strict, duck, etc.

Validation

If descent_validators is defined, these validators
will be run first, before member elements are validated.

If validators is defined, these
validators will be run after member elements are validated.

Dict

	
class Dict(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Mapping, dict [http://docs.python.org/library/stdtypes.html#dict]

A mapping Container with named members.

	
policy = 'subset'

	One of ‘strict’, ‘subset’ or ‘duck’. Default ‘subset’.

See set() Policy

	
classmethod of(*fields)

	
Todo

doc of()

	
classmethod from_object(obj, include=None, omit=None, rename=None, **kw)

	Return an element initialized with an object’s attributes.

	Parameters:	
	obj – any object

	include – optional, an iterable of attribute names to pull from
obj, if present on the object. Only these attributes will be
included.

	omit – optional, an iterable of attribute names to ignore on
obj. All other attributes matching a named field on the Form
will be included.

	rename – optional, a mapping of attribute-to-field name
transformations. Attributes specified in the mapping will be
included regardless of include or omit.

	**kw – keyword arguments will be passed to the element’s
constructor.

include and omit are mutually exclusive.

This is a convenience constructor for set_by_object():

element = cls(**kw)
element.set_by_object(obj, include, omit, rename)

	
set(value, policy=None)

	
Todo

doc set()

	
set_by_object(obj, include=None, omit=None, rename=None)

	Set fields with an object’s attributes.

	Parameters:	
	obj – any object

	include – optional, an iterable of attribute names to pull from
obj, if present on the object. Only these attributes will be
included.

	omit – optional, an iterable of attribute names to ignore on
obj. All other attributes matching a named field on the Form
will be included.

	rename – optional, a mapping of attribute-to-field name
transformations. Attributes specified in the mapping will be
included regardless of include or omit.

include and omit are mutually exclusive.

Sets fields on self, using as many attributes as possible from
obj. Object attributes that do not correspond to field names are
ignored.

Mapping instances have two corresponding methods useful for
round-tripping values in and out of your domain objects.

update_object() performs the inverse of set_object(), and
slice() is useful for constructing new objects.

>>> user = User('biff', 'secret')
>>> form = UserForm()
>>> form.set_by_object(user)
>>> form['login'].value
u'biff'
>>> form['password'] = u'new-password'
>>> form.update_object(user, omit=['verify_password'])
>>> user.password
u'new-password'
>>> user_keywords = form.slice(omit=['verify_password'], key=str)
>>> sorted(user_keywords.keys())
['login', 'password']
>>> new_user = User(**user_keywords)

	
update_object(obj, include=None, omit=None, rename=None, key=<type 'str'>)

	Update an object’s attributes using the element’s values.

Produces a slice() using include, omit, rename and
key, and sets the selected attributes on obj using
setattr.

	Returns:	nothing. obj is modified directly.

	
slice(include=None, omit=None, rename=None, key=None)

	Return a dict containing a subset of the element’s values.

SparseDict

	
class SparseDict(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Dict

A Mapping which may contain a subset of the schema’s allowed keys.

This differs from Dict in that new instances are not created with
empty values for all possible keys. In addition, mutating operations are
allowed so long as the operations operate within the schema. For example,
you may pop() and del members of the mapping.

	
minimum_fields = None

	The subset of fields to autovivify on instantiation.

May be None or 'required'. If None, mappings will be
created empty and mutation operations are unrestricted within the
bounds of the field_schema. If required, fields with
optional of False will always be present after
instantiation, and attempts to remove them from the mapping with del
and friends will raise TypeError.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Lists

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Lists

Instances of List hold other elements and operate like Python
lists. Lists are configured with a member_schema, such
as an Integer. Each list member will
be an instance of that type. The List.of() schema constructor
will set member_schema:

>>> from flatland import List, Integer
>>> Numbers = List.of(Integer)
>>> Numbers.member_schema
<class 'flatland.schema.scalars.Integer'>

Python list methods and operators may be passed instances of
member_schema or plain Python values. Using plain values
is a shorthand for creating a member_schema instance and
set()ting it with the value:

>>> ones = Numbers()
>>> ones.append(1)
>>> ones.value
[1]
>>> another_one = Integer()
>>> another_one.set(1)
True
>>> ones.append(another_one)
>>> ones.value
[1, 1]

List extends Sequence and adds positional naming to its
elements. Elements are addressable via their list index in
el() and their index in the list
is reflected in their flattened name:

Example:

>>> from flatland import List, String
>>> Names = List.named('names').of(String.named('name'))
>>> names = Names([u'a', u'b'])
>>> names.value
[u'a', u'b']
>>> names.flatten()
[(u'names_0_name', u'a'), (u'names_1_name', u'b')]
>>> names.el('.1').value
u'b'

Validation

If descent_validators is defined, these validators
will be run first, before member elements are validated.

If validators is defined, these
validators will be run after member elements are validated.

List

	
class List(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Sequence

An ordered, homogeneous Sequence.

	
slot_type

	alias of ListSlot

	
member_schema = ()

	An Element class for member elements.

See also the of() schema configuration method.

	
maximum_set_flat_members = 1024

	Maximum list members set in a set_flat() operation.

Once this maximum of child members has been added, subsequent data will be
dropped. This ceiling prevents denial of service attacks when processing
Lists with prune_empty set to False; without it remote attackers
can trivially exhaust memory by specifying one low and one very high
index.

	
append(value)

	Append value to end.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before appending.

	
extend(iterable)

	Append iterable values to the end.

If values of iterable are not instances of member_schema,
they will be wrapped in a new element of that type before extending.

	
pop([index]) item -- remove and return item at index (default last).

	Raises IndexError if list is empty or index is out of range.

	
insert(index, value)

	Insert value at index.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before inserting.

	
remove(value)

	Remove member with value value.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before searching for a matching
element to remove.

	
sort(cmp=None, key=None, reverse=False)

	L.sort(cmp=None, key=None, reverse=False) – stable sort IN PLACE;
cmp(x, y) -> -1, 0, 1

	
reverse()

	L.reverse() – reverse IN PLACE

	
set_default()

	set() the element to the schema default.

List’s set_default supports two modes for
default values:

	If default is an integer, the List will be filled with that many
elements. Each element will then have
set_default() called on it.

	Otherwise if default has a value, the list will be set() with
it.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Arrays and MultiValues

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Arrays and MultiValues

Array

	
class Array(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Sequence

A transparent homogeneous Container, for multivalued form elements.

Arrays hold a collection of values under a single name, allowing
all values of a repeated (key, value) pair to be captured and
used. Elements are sequence-like.

MultiValue

	
class MultiValue(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Array, flatland.schema.scalars.Scalar

A transparent homogeneous Container, for multivalued form elements.

MultiValues combine aspects of Scalar and
Sequence fields, allowing all values of a repeated (key,
value) pair to be captured and used.

MultiValues take on the name of their child and have no identity
of their own when flattened. Elements are mostly sequence-like
and can be indexed and iterated. However the u or
value are scalar-like, and return values from the first
element in the sequence.

	
u

	The .u of the first item in the sequence, or u’‘.

	
value

	The .value of the first item in the sequence, or None.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Enumerations

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Enumerations

Constrained Types

	
class Constrained(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

A scalar type with a constrained set of legal values.

Wraps another scalar type and ensures that a value
set() is within bounds defined by
valid_value(). If valid_value() returns false, the element is
not converted and will have a value
of None.

Constrained is a semi-abstract class that requires an
implementation of valid_value(), either by subclassing or overriding
on a per-instance basis through the constructor.

An example of a wrapper of int values that only allows the values of 1, 2
or 3:

>>> from flatland import Constrained, Integer
>>> def is_valid(element, value):
... return value in (1, 2, 3)
...
>>> schema = Constrained.using(child_type=Integer, valid_value=is_valid)
>>> element = schema()
>>> element.set(u'2')
True
>>> element.value
2
>>> element.set(u'5')
False
>>> element.value is None
True

Enum is a subclass which provides a convenient enumerated
wrapper.

	
child_type

	
Todo

doc

alias of String

	
static valid_value(element, value)

	Returns True if value for element is within the constraints.

This method is abstract. Override in a subclass or pass a custom
callable to the Constrained constructor.

Enum

	
class Enum(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Constrained

A scalar type with a limited set of allowed values.

By default values are strings, but can be of any type you
like by customizing child_type.

	
classmethod valued(*enum_values)

	Return a class with valid_values = enum_values

	Parameters:	*enum_values – zero or more values for valid_values.

	Returns:	a new class

	
valid_values = ()

	Valid element values.

Attempting to set() a value not present in valid_values will cause
an adaptation failure, and value will be None.

	
valid_value(element, value)

	True if value is within valid_values.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Compound Fields

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Compound Fields

	
class Compound(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Mapping, flatland.schema.scalars.Scalar

A mapping container that acts like a scalar value.

Compound fields are dictionary-like fields that can assemble a
u and value from their children, and can
decompose a structured value passed to a set() into values
for its children.

A simple example is a logical calendar date field composed of 3
separate Integer component fields, year, month and day. The
Compound can wrap the 3 parts up into a single logical field that
handles datetime.date [http://docs.python.org/library/datetime.html#datetime.date] values. Set a date on the
logical field and its component fields will be set with year,
month and day; alter the int value of the year component field and
the logical field updates the date to match.

Compound is an abstract class. Subclasses must implement
compose() and explode().

Composites run validation after their children.

	
compose()

	Return a unicode, native tuple built from children’s state.

	Returns:	a 2-tuple of unicode representation, native value.
These correspond to the
serialize_element() and
adapt_element() methods of
Scalar objects.

For example, a compound date field may return a ‘-‘ delimited
string of year, month and day digits and a
datetime.date [http://docs.python.org/library/datetime.html#datetime.date].

	
explode(value)

	Given a compound value, assign values to children.

	Parameters:	value – a value to be adapted and exploded

For example, a compound date field may read attributes from a
datetime.date [http://docs.python.org/library/datetime.html#datetime.date] value and set() them on child
fields.

The decision to perform type checking on value is completely
up to you and you may find you want different rules for
different compound types.

	
is_empty

	True if all subfields are empty.

	
class DateYYYYMMDD(value=Unspecified, **kw)

	Bases: flatland.schema.compound.Compound, flatland.schema.scalars.Date

	
class JoinedString(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Array, flatland.schema.scalars.String

A sequence container that acts like a compounded string such as CSV.

Marshals child element values to and from a single string:

>>> from flatland import JoinedString
>>> el = JoinedString(['x', 'y', 'z'])
>>> el.value
u'x,y,z'
>>> el2 = JoinedString('foo,bar')
>>> el2[1].value
u'bar'
>>> el2.value
u'foo,bar'

Only the joined representation is considered when flattening or restoring
with set_flat(). JoinedStrings run validation after their children.

	
separator = u','

	The string used to join children’s u representations. Will
also be used to split incoming strings, unless separator_regex
is also defined.

	
separator_regex = None

	Optional, a regular expression, used preferentially to split an
incoming separated value into components. Used in combination with
separator, a permissive parsing policy can be combined with
a normalized representation, e.g.:

>>> import re
>>> schema = JoinedString.using(separator=', ',
... separator_regex=re.compile('\s*,\s*'))
...
>>> schema('a , b,c,d').value
u'a, b, c, d'

	
member_schema

	The default child type is String,
but can be customized with
Integer or any other type.

alias of String

	
value

	A read-only separator-joined string of child values.

	
u

	A read-only separator-joined string of child values.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 References

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

References

	
class Ref(value=Unspecified, **kw)

	Bases: flatland.schema.scalars.Scalar

	
adapt(value)

	Given any value, try to coerce it into native format.

	Returns:	the native format or raises AdaptationError on failure.

This abstract method is called by set().

	
serialize(value)

	Given any value, coerce it into a Unicode representation.

	Returns:	Must return a Unicode object, always.

No special effort is made to coerce values not of native or a
compatible type.

This semi-abstract method is called by set(). The base
implementation returns unicode(value).

	
u

	The Unicode representation of the reference target.

	
value

	The native value representation of the reference target.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Abstract Containers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Defining and Using Forms

Abstract Containers

Containers

	
class Container(value=Unspecified, **kw)

	Bases: flatland.schema.base.Element

Holds other schema items.

Base class for elements that can contain other elements, such as
List and Dict.

	Parameters:	
	descent_validators – optional, a sequence of validators that
will be run before contained elements are validated.

	validators – optional, a sequence of validators that will be
run after contained elements are validated.

	**kw – other arguments common to
FieldSchema.

	
descent_validators = ()

	
Todo

doc descent_validators

	
classmethod descent_validated_by(*validators)

	Return a class with descent validators set to *validators.

	Parameters:	*validators – one or more validator functions, replacing any
descent validators present on the class.

	Returns:	a new class

	
classmethod including_descent_validators(*validators, **kw)

	Return a class with additional descent *validators.

	Parameters:	
	*validators – one or more validator functions

	position – defaults to -1. By default, additional validators
are placed after existing descent validators. Use 0 for before, or
any other list index to splice in validators at that point.

	Returns:	a new class

	
validate_element(element, state, descending)

	Validates on the first (downward) and second (upward) pass.

If descent_validators are defined on the schema, they
will be evaluated before children are validated. If a
validation function returns flatland.SkipAll or
flatland.SkipFalse, downward validation will halt on
this container and children will not be validated.

If validators are defined, they will be evaluated
after children are validated.

See FieldSchema.validate_element().

Sequences

>>> from flatland import List, String
>>> Names = List.named('names').of(String.named('name'))

>>> pruned = Names()
>>> pruned.set_flat([('names_0_name', 'first'),
... ('names_99_name', 'last')])
>>> pruned.value
[u'first', u'last']

>>> unpruned = Names(prune_empty=False)
>>> unpruned.set_flat([('names_0_name', 'first'),
... ('names_99_name', 'last')])
>>> len(unpruned.value)
100
>>> unpruned.value[0:3]
[u'first', None, None]

	
class Sequence(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Container, list

Abstract base of sequence-like Containers.

Instances of Sequence hold other elements and operate like Python
lists. Each sequence member will be an instance of member_schema.

Python list methods and operators may be passed instances of
member_schema or plain Python values. Using plain values is a
shorthand for creating an member_schema instance and
set()ting it with the value:

>>> from flatland import Array, Integer
>>> Numbers = Array.of(Integer)
>>> ones = Numbers()
>>> ones.append(1)
>>> ones
[<Integer None; value=1>]
>>> another_one = Integer()
>>> another_one.set(1)
True
>>> ones.append(another_one)
>>> ones
[<Integer None; value=1>, <Integer None; value=1>]

	
member_schema = None

	An Element class for sequence members.

	
prune_empty = True

	If true, skip missing index numbers in set_flat(). Default True.

See Sequences for more information.

	
classmethod of(*schema)

	Declare the class to hold a sequence of *schema.

	Params *schema:	one or more Element classes

	Returns:	cls

Configures the member_schema of cls to hold instances of
*schema.

>>> from flatland import Array, String
>>> Names = Array.of(String.named('name'))
>>> Names.member_schema
<class 'flatland.schema.scalars.String'>
>>> el = Names(['Bob', 'Biff'])
>>> el
[<String u'name'; value=u'Bob'>, <String u'name'; value=u'Biff'>]

If more than one Element is specified in
*schema, an anonymous Dict is created to hold them.

>>> from flatland import Integer
>>> Points = Array.of(Integer.named('x'), Integer.named('y'))
>>> Points.member_schema
<class 'flatland.schema.containers.Dict'>
>>> el = Points([dict(x=1, y=2)])
>>> el
[{u'y': <Integer u'y'; value=2>, u'x': <Integer u'x'; value=1>}]

	
set(iterable)

	Assign the native and Unicode value.

Attempts to adapt the given iterable and assigns this element’s
value and u attributes in tandem. Returns True if the
adaptation was successful. See
Element.set().

Set must be supplied a Python sequence or iterable:

>>> from flatland import Integer, List
>>> Numbers = List.of(Integer)
>>> nums = Numbers()
>>> nums.set([1, 2, 3, 4])
True
>>> nums.value
[1, 2, 3, 4]

	
set_default()

	set() the element to the schema default.

	
append(value)

	Append value to end.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before appending.

	
extend(iterable)

	Append iterable values to the end.

If values of iterable are not instances of member_schema,
they will be wrapped in a new element of that type before extending.

	
insert(index, value)

	Insert value at index.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before inserting.

	
remove(value)

	Remove member with value value.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before searching for a matching
element to remove.

	
index(value)

	Return first index of value.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before searching for a matching
element in the sequence.

	
count(value)

	Return number of occurrences of value.

If value is not an instance of member_schema, it will be
wrapped in a new element of that type before searching for matching
elements in the sequence.

Mappings

	
class Mapping(value=Unspecified, **kw)

	Bases: flatland.schema.containers.Container, dict [http://docs.python.org/library/stdtypes.html#dict]

Base of mapping-like Containers.

	
field_schema = ()

	
Todo

doc field_schema

	
may_contain(key)

	Return True if the element schema allows a field named key.

	
clear() None. Remove all items from D.

	

	
popitem() (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
update(*dictish, **kwargs)

	Update with keys from dict-like *dictish and **kwargs

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
set(value)

	
Todo

doc set()

	
set_default()

	set() the element to the schema default.

	
u

	A string repr of the element.

	
value

	The element as a regular Python dictionary.

	
is_empty

	Mappings are never empty.

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Validation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

Validation

	Basic Validation
	Validating an Element

	Validating Entire Forms At Once

	Optional Fields

	Validation Signals

	Custom Validation
	Custom Validation Basics

	Validation Phases

	Short-Circuiting Descent Validation

	Messaging

	Normalization

	Validation state

	Examining Other Elements

	Short-Circuiting Validation

	Validator API
	Customizing Validators

	Message Templating

	Message Pluralization

	Message Internationalization

	Dynamic Messages

	The Validator Class

	Included Validators
	Scalars

	Containers

	Strings

	Numbers

	Email Addresses

	URLs

 Copyright 2008-2011, the flatland authors and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Basic Validation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flatland 0.0.hg-tip documentation

 	Validation

